Exercise 57

Let $f(x)=\sqrt[3]{x}$.
(a) If $a \neq 0$, use Equation 2.7.5 to find $f^{\prime}(a)$.
(b) Show that $f^{\prime}(0)$ does not exist.
(c) Show that $y=\sqrt[3]{x}$ has a vertical tangent line at $(0,0)$. (Recall the shape of the graph of f. See Figure 1.2.13.)

Solution

Use Equation 2.7.5 to find $f^{\prime}(a)$, assuming $a \neq 0$.

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt[3]{x}-\sqrt[3]{a}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt[3]{x}-\sqrt[3]{a}}{(\sqrt[3]{x}-\sqrt[3]{a})\left(\sqrt[3]{x^{2}}+\sqrt[3]{a} \sqrt[3]{x}+\sqrt[3]{a^{2}}\right)} \\
& =\lim _{x \rightarrow a} \frac{1}{\left(\sqrt[3]{x^{2}}+\sqrt[3]{a} \sqrt[3]{x}+\sqrt[3]{a^{2}}\right)} \\
& =\frac{1}{\left(\sqrt[3]{a^{2}}+\sqrt[3]{a} \sqrt[3]{a}+\sqrt[3]{a^{2}}\right)} \\
& =\frac{1}{3 \sqrt[3]{a^{2}}} \\
& =\frac{1}{3} a^{-2 / 3}
\end{aligned}
$$

$f^{\prime}(0)$ does not exist because

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} \\
& =\lim _{x \rightarrow 0} \frac{\sqrt[3]{x}-\sqrt[3]{0}}{x} \\
& =\lim _{x \rightarrow 0} \frac{\sqrt[3]{x}}{x} \\
& =\lim _{x \rightarrow 0} \frac{1}{x^{2 / 3}} \\
& =\infty
\end{aligned}
$$

this limit does not exist. Note that $f^{\prime}(0)$ represents the slope of $f(x)$ at $x=0$. Since $f^{\prime}(0)=\infty$, there is a vertical tangent at $x=0$.

Below is a graph of $f(x)=\sqrt[3]{x}$ to illustrate the vertical tangent at $x=0$.

